RANDOM NUMBER GENERATION IN COMPUTING: SECURITY, ARCHITECTURE AND OS-LEVEL IMPLEMENTATIONS

Authors

  • Nuriddin Safoev Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

Keywords:

Random Number Generation, Operating Systems, Entropy, DRBG

Abstract

Random number generation (RNG) is a cornerstone of secure computing, underpinning cryptography, system security, and reliable software operations. Modern operating systems incorporate intricate mechanisms to produce high-quality randomness suitable for a variety of applications. This paper surveys the RNG architectures implemented in leading operating systems, including Microsoft Windows, Linux, and Apple’s macOS/iOS. It examines entropy sources, cryptographically secure deterministic random bit generators (DRBGs), system APIs, and methods for evaluating randomness quality. The analysis emphasizes architectural differences, identifies potential vulnerabilities, and outlines best practices for secure randomness generation. The paper serves as a reference for students, software developers, and security professionals seeking an in-depth comparative understanding of operating system-level RNG strategies.

References

Barker, E., & Kelsey, J. (2015). Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised). NIST Special Publication 800-90A Rev. 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness Requirements for Security. RFC 4086. https://www.rfc-editor.org/rfc/rfc4086

Microsoft. (2023). Cryptography API: Next Generation. Microsoft Docs. https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal

Microsoft. (2023). BCryptGenRandom function (bcrypt.h). Microsoft Docs. https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom

Linux Kernel Documentation. (2023). Random Number Generator. https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html

Linux man-pages project. (2023). getrandom(2) – Linux manual page. https://man7.org/linux/man-pages/man2/getrandom.2.html

Apple Developer Documentation. (2023). SecRandomCopyBytes. https://developer.apple.com/documentation/security/1399291-secrandomcopybytes

Apple. (2020). Platform Security Guide. https://support.apple.com/guide/security/welcome/web

Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analysis of the Linux Random Number Generator. IEEE Symposium on Security and Privacy. https://doi.org/10.1109/SP.2006.26

Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007). Cryptanalysis of the Random Number Generator of the Windows Operating System. ACM CCS. https://doi.org/10.1145/1315245.1315274

Lacharme, P. (2012). Security flaws in Linux's /dev/random. https://eprint.iacr.org/2012/251

BSD Unix. (2022). arc4random and related APIs. https://man.openbsd.org/arc4random

Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator. https://www.schneier.com/paper-yarrow.pdf

Dodis, Y., et al. (2013). Security Analysis of Pseudorandom Number Generators with Input: /dev/random is not Robust. ACM CCS. https://doi.org/10.1145/2508859.2516661

Intel Corporation. (2014). Intel® Digital Random Number Generator (DRNG) Software Implementation Guide. https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html

National Institute of Standards and Technology. (2012). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST SP 800-22 Rev. 1a. https://doi.org/10.6028/NIST.SP.800-22r1a

Müller, T. (2013). Security of the OpenSSL PRNG. International Journal of Information Security, 12(4), 251–265. https://doi.org/10.1007/s10207-013-0213-7

Debian Security Advisory. (2008). Debian OpenSSL Predictable PRNG Vulnerability (DSA-1571). https://www.debian.org/security/2008/dsa-1571

Downloads

Published

2025-11-25

How to Cite

Nuriddin Safoev. (2025). RANDOM NUMBER GENERATION IN COMPUTING: SECURITY, ARCHITECTURE AND OS-LEVEL IMPLEMENTATIONS. Next Scientists Conferences, 1(01), 176–181. Retrieved from https://nextscientists.com/index.php/science-conf/article/view/888