
 

 

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE 
IN A RAPIDLY EVOLVING WORLD 

 
Published Date: - 25-11-2025 Page No: - 176-181 

 RANDOM NUMBER GENERATION IN COMPUTING: 
SECURITY, ARCHITECTURE AND OS-LEVEL 

IMPLEMENTATIONS 
 
 

Nuriddin Safoev 
Tashkent University of Information Technologies named after Muhammad 

al-Khwarizmi, Tashkent, Uzbekistan 
 

ABSTRACT 

Random number generation (RNG) is a cornerstone of secure computing, underpinning 

cryptography, system security, and reliable software operations. Modern operating systems 

incorporate intricate mechanisms to produce high-quality randomness suitable for a variety of 

applications. This paper surveys the RNG architectures implemented in leading operating 

systems, including Microsoft Windows, Linux, and Apple’s macOS/iOS. It examines entropy 

sources, cryptographically secure deterministic random bit generators (DRBGs), system APIs, 

and methods for evaluating randomness quality. The analysis emphasizes architectural 

differences, identifies potential vulnerabilities, and outlines best practices for secure 

randomness generation. The paper serves as a reference for students, software developers, and 

security professionals seeking an in-depth comparative understanding of operating system-

level RNG strategies. 

 

KEYWORDS: Random Number Generation, Operating Systems, Entropy, DRBG, Cryptography, 

RNG APIs, Windows, Linux, macOS. 

 

INTRODUCTION 

Randomness is a fundamental component across diverse computing domains, including 

simulations, gaming, probabilistic algorithms, and, critically, cryptographic and security 

systems. In cryptography, the unpredictability of generated values directly determines the 

strength of keys, initialization vectors (IVs), nonces, salts, and secure tokens. High-quality 

randomness ensures that sensitive data remains confidential, resistant to manipulation, and 

secure against adversarial analysis [1]. 

The phrase “security relies on randomness” captures this dependency, as predictable or weak 

random values can compromise entire systems [2]. Essential use cases include: 

• Encryption keys: Must be unpredictable to prevent unauthorized access. 

• Nonces: One-time numbers preventing replay attacks and ensuring session uniqueness. 

• Salts: Random values appended to passwords, mitigating precomputed hash attacks. 

• Secure tokens: Critical for authentication, session tracking, and secure communications. 

Insufficient entropy in random numbers has historically resulted in severe security breaches. 

Well-known incidents, such as flawed key generation, illustrate that weak RNGs can lead to 

compromised encryption, token forgery, and impersonation [3]. 

High-quality randomness is crucial for security protocols like: 

• TLS (Transport Layer Security): Secures web communications. 

• VPNs (Virtual Private Networks): Protects network traffic. 

• Digital signatures: Authenticate and preserve data integrity. 

 



 

 

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE 
IN A RAPIDLY EVOLVING WORLD 

 
Published Date: - 25-11-2025 Page No: - 176-181 

During operations like TLS handshakes, random values are used to generate session keys. 

Predictable values in such contexts could allow attackers to decrypt sensitive communications. 

Operating systems address these needs by integrating RNG subsystems that gather entropy 

from multiple sources, including: 

• User interactions (keyboard, mouse). 

• Hardware timing variations (network packets, disk access). 

• Hardware-based noise sources (Intel RDRAND, Trusted Platform Modules). 

Collected entropy is processed through cryptographic algorithms—such as AES-CTR, SHA-

based DRBGs, or ChaCha20—to produce secure pseudorandom streams. Standardized APIs 

(e.g., Windows’ BCryptGenRandom, Linux’s /dev/random, /dev/urandom, getrandom(), and 

macOS’s arc4random() or SecRandomCopyBytes()) enable developers to safely access random 

values without implementing custom RNGs [4]. 

While the goal—high-quality randomness—is consistent across platforms, design approaches 

vary in: 

• Platform architectures: Windows employs CNG, Linux relies on device files and system 

calls, and macOS/iOS integrates RNGs into libraries and hardware. 

• Entropy sourcing: Some systems rely more on hardware RNGs; others emphasize 

software and event-driven inputs. 

• DRBG selection: Implementations may use AES, SHA, HMAC, or ChaCha20 depending on 

performance and security requirements. 

This paper provides a comparative overview of RNG implementation strategies in major 

operating systems, highlighting best practices, potential weaknesses, and avenues for future 

improvements. 

2. Background and Importance 

Random number generation underpins modern cryptography, where the unpredictability and 

entropy of values are directly tied to data confidentiality and system integrity. RNGs are used 

to produce keys, initialization vectors, nonces, salts, session IDs, and digital signatures. 

Predictable outputs jeopardize the entire security framework [5]. 

Real-world incidents, such as the Debian OpenSSL vulnerability (2006–2008), demonstrate the 

catastrophic effects of weak RNGs. A modification that removed key entropy collection reduced 

possible key variations to 32,768, making brute-force attacks trivial. This affected SSH keys, SSL 

certificates, and other secure components, highlighting the importance of careful RNG design. 

To address these challenges, modern operating systems use layered RNG architectures: 

• Entropy sources: Non-deterministic hardware and software inputs, such as keystroke 

timing, disk I/O, or hardware RNGs (e.g., Intel RDRAND, AMD RdSeed, TPMs). 

• Entropy pools: Aggregates of raw entropy buffered until sufficient for secure seeding of 

DRBGs. Linux distinguishes pools for /dev/random and /dev/urandom to prevent insufficient 

randomness. 

• DRBGs/PRGs: Expand limited entropy into secure pseudorandom streams using AES-

CTR, HMAC, SHA, or ChaCha20. Compliance with NIST SP 800-90A/B/C ensures cryptographic 

robustness. 

• APIs: Expose secure randomness to developers. Correct usage is critical, as weak 

alternatives (e.g., rand()/srand()) can compromise security. 



 

 

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE 
IN A RAPIDLY EVOLVING WORLD 

 
Published Date: - 25-11-2025 Page No: - 176-181 

Well-engineered RNGs protect against weak encryption, token forgery, impersonation, and 

unauthorized access. Continuous improvements and audits are necessary to maintain security 

in evolving threat landscapes. 

3. Random Number Generation in Operating Systems 

3.1. RNG in Microsoft Windows 

Windows RNG is implemented via the Cryptography API: Next Generation (CNG), incorporating 

an AES-CTR-based DRBG compliant with NIST SP 800-90A. 

Entropy sources include: 

• Hardware RNGs (e.g., Intel RDRAND). 

• System events (interrupts, calls). 

• User input (mouse, keyboard). 

• Network traffic timing. 

• Disk read/write delays. 

APIs and components: 

• SystemPrng: Kernel-level CSPRNG, periodically reseeded. 

• BCryptGenRandom(): Provides developers access to secure random bytes, with options 

to use system-preferred or custom RNG algorithms. 

Security features: 

• Forward and backward secrecy through periodic reseeding. 

• Entropy monitoring to detect depletion or tampering. 

3.2. RNG in Linux Systems 

Linux provides /dev/random (blocking) and /dev/urandom (non-blocking) interfaces, 

supplemented by the getrandom() syscall. Since kernel 5.6, ChaCha20-based DRBGs replace 

older SHA-1-based generators. 

Entropy collection: 

• Interrupt timings, keyboard/mouse events. 

• Device driver noise (disk, network). 

• Hardware RNGs (mixed to prevent bias). 

The rngd daemon integrates hardware RNG data, ensuring FIPS-compliant validation and 

proper entropy injection. 

3.3. RNG in Apple’s macOS and iOS 

Apple’s RNG combines hardware acceleration via the Secure Enclave and T2 Security Chip with 

software-based entropy. 

APIs and DRBGs: 

• SecRandomCopyBytes(): Primary interface for secure random bytes. 

• AES-CTR and ChaCha20-based DRBGs ensure cryptographic security. 

• Frequent reseeding and sandboxing reinforce forward/backward secrecy. 

Applications: Secure Boot, FileVault encryption, biometric authentication, and other critical 

security functions. 

4. Comparative Overview 

• Microsoft Windows: Utilizes the Cryptography API: Next Generation (CNG) with an AES-

CTR Deterministic Random Bit Generator (DRBG). It draws entropy from diverse sources, 

including hardware RNGs (e.g., Intel’s RDRAND), system event timings, user inputs, network 

activity, and disk operations. The BCryptGenRandom() API provides developers with access to 



 

 

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE 
IN A RAPIDLY EVOLVING WORLD 

 
Published Date: - 25-11-2025 Page No: - 176-181 

cryptographically secure random bytes, with periodic reseeding ensuring forward and 

backward secrecy. 

• Linux: Employs a dual-interface model with /dev/random (blocking) and 

/dev/urandom (non-blocking), supplemented by the modern getrandom() system call. Since 

kernel 5.6, it uses a ChaCha20-based DRBG, collecting entropy from interrupt timings, user 

inputs, device drivers, and hardware RNGs. The rngd daemon enhances hardware entropy 

integration, ensuring quality through validation. 

• Apple macOS/iOS: Integrates RNG with hardware acceleration via the Secure Enclave 

and T2 Security Chip, using the SecRandomCopyBytes() API. It combines AES-CTR and 

ChaCha20-based DRBGs, sourcing entropy from system events and dedicated hardware. 

Sandboxing and frequent reseeding enhance security, supporting critical functions like Secure 

Boot, FileVault, and biometric authentication. 

Table 1: Comparison of RNGs for operation systems 

Feature Windows Linux macOS/iOS 

DRBG Type 
AES-CTR (NIST SP 800-

90A) 
ChaCha20 AES-CTR / ChaCha20 

Entropy 
Sources 

Hardware RNG, system 
events, user input, 

network, disk 

Interrupts, user 
input, drivers, 
hardware RNG 

Secure Enclave, T2 Chip, 
system events 

Developer 
API 

BCryptGenRandom() 
/dev/random, 

/dev/urandom, 
getrandom() 

SecRandomCopyBytes() 

Reseeding 
Periodic for 

forward/backward 
secrecy 

Automatic, kernel-
managed 

Frequent, hardware-
assisted 

Security 
Emphasis 

Enterprise and general-
purpose computing 

Kernel and user-
space cryptography 

Mobile, FIPS-compliant, 
hardware-accelerated 

 

Shared principles: 

• Secure entropy acquisition from diverse sources. 

• Cryptographically compliant DRBG expansion. 

• Regular reseeding to maintain secrecy. 

• Accessible APIs for developers. 

Challenges: 

• Low entropy at system startup. 

• Embedded systems with limited hardware. 

• Heterogeneous hardware environments. 

Future directions: 

• Quantum-resistant RNG designs. 

• Enhanced entropy validation and monitoring. 

• Open-source transparency and third-party audits. 

Conclusions 

The security and reliability of modern computing systems depend on robust random number 

generation. Windows, Linux, and macOS/iOS each implement unique RNG architectures 

tailored to their environments while sharing core principles of secure entropy collection, 

cryptographic expansion, and accessible APIs. Continued innovation in RNG design is vital to 



 

 

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE 
IN A RAPIDLY EVOLVING WORLD 

 
Published Date: - 25-11-2025 Page No: - 176-181 

counter increasingly sophisticated attacks and ensure that cryptographic mechanisms remain 

resilient and trustworthy. 

References 

1. Barker, E., & Kelsey, J. (2015). Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators (Revised). NIST Special Publication 800-90A Rev. 

1. https://doi.org/10.6028/NIST.SP.800-90Ar1 

2. Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness Requirements for Security. 

RFC 4086. https://www.rfc-editor.org/rfc/rfc4086 

3. Microsoft. (2023). Cryptography API: Next Generation. Microsoft Docs. 

https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal 

4. Microsoft. (2023). BCryptGenRandom function (bcrypt.h). Microsoft Docs. 

https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-

bcryptgenrandom 

5. Linux Kernel Documentation. (2023). Random Number Generator. 

https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html 

6. Linux man-pages project. (2023). getrandom(2) – Linux manual page. 

https://man7.org/linux/man-pages/man2/getrandom.2.html 

7. Apple Developer Documentation. (2023). SecRandomCopyBytes. 

https://developer.apple.com/documentation/security/1399291-secrandomcopybytes 

8. Apple. (2020). Platform Security Guide. 

https://support.apple.com/guide/security/welcome/web 

9. Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analysis of the Linux Random Number 

Generator. IEEE Symposium on Security and Privacy. 

https://doi.org/10.1109/SP.2006.26 

10. Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007). Cryptanalysis of the Random Number 

Generator of the Windows Operating System. ACM CCS. 

https://doi.org/10.1145/1315245.1315274 

11. Lacharme, P. (2012). Security flaws in Linux's /dev/random. 

https://eprint.iacr.org/2012/251 

12. BSD Unix. (2022). arc4random and related APIs. https://man.openbsd.org/arc4random 

13. Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-160: Notes on the Design and 

Analysis of the Yarrow Cryptographic Pseudorandom Number Generator. 

https://www.schneier.com/paper-yarrow.pdf 

14. Dodis, Y., et al. (2013). Security Analysis of Pseudorandom Number Generators with 

Input: /dev/random is not Robust. ACM CCS. 

https://doi.org/10.1145/2508859.2516661 

15. Intel Corporation. (2014). Intel® Digital Random Number Generator (DRNG) Software 

Implementation Guide. https://www.intel.com/content/www/us/en/content-

details/671488/intel-digital-random-number-generator-drng-software-

implementation-guide.html 

16. National Institute of Standards and Technology. (2012). A Statistical Test Suite for 

Random and Pseudorandom Number Generators for Cryptographic Applications. NIST 

SP 800-22 Rev. 1a. https://doi.org/10.6028/NIST.SP.800-22r1a 



 

 

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE 
IN A RAPIDLY EVOLVING WORLD 

 
Published Date: - 25-11-2025 Page No: - 176-181 

17. Müller, T. (2013). Security of the OpenSSL PRNG. International Journal of Information 

Security, 12(4), 251–265. https://doi.org/10.1007/s10207-013-0213-7 

18. Debian Security Advisory. (2008). Debian OpenSSL Predictable PRNG Vulnerability 

(DSA-1571). https://www.debian.org/security/2008/dsa-1571 


