NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE
IN A RAPIDLY EVOLVING WORLD

Published Date: - 25-11-2025 Page No: - 176-181

NAVIGATING CHANGE
STRATEGIES FOR
INNOVATION AND
RESILIENCE IN
ARAPIDLY
EVOLVING

RANDOM NUMBER GENERATION IN COMPUTING:
SECURITY, ARCHITECTURE AND OS-LEVEL
IMPLEMENTATIONS

zzzzzzzzzz

AUSTIN

USA

Nuriddin Safoev
J ®wss Tashkent University of Information Technologies named after Muhammad
al-Khwarizmi, Tashkent, Uzbekistan

ABSTRACT

Random number generation (RNG) is a cornerstone of secure computing, underpinning
cryptography, system security, and reliable software operations. Modern operating systems
incorporate intricate mechanisms to produce high-quality randomness suitable for a variety of
applications. This paper surveys the RNG architectures implemented in leading operating
systems, including Microsoft Windows, Linux, and Apple’s macOS/iOS. It examines entropy
sources, cryptographically secure deterministic random bit generators (DRBGs), system APIs,
and methods for evaluating randomness quality. The analysis emphasizes architectural
differences, identifies potential vulnerabilities, and outlines best practices for secure
randomness generation. The paper serves as a reference for students, software developers, and
security professionals seeking an in-depth comparative understanding of operating system-
level RNG strategies.

KEYWORDS: Random Number Generation, Operating Systems, Entropy, DRBG, Cryptography,
RNG APIs, Windows, Linux, macOS.

INTRODUCTION

Randomness is a fundamental component across diverse computing domains, including
simulations, gaming, probabilistic algorithms, and, critically, cryptographic and security
systems. In cryptography, the unpredictability of generated values directly determines the
strength of keys, initialization vectors (IVs), nonces, salts, and secure tokens. High-quality
randomness ensures that sensitive data remains confidential, resistant to manipulation, and
secure against adversarial analysis [1].

The phrase “security relies on randomness” captures this dependency, as predictable or weak
random values can compromise entire systems [2]. Essential use cases include:

. Encryption keys: Must be unpredictable to prevent unauthorized access.

. Nonces: One-time numbers preventing replay attacks and ensuring session uniqueness.
. Salts: Random values appended to passwords, mitigating precomputed hash attacks.

. Secure tokens: Critical for authentication, session tracking, and secure communications.
Insufficient entropy in random numbers has historically resulted in severe security breaches.
Well-known incidents, such as flawed key generation, illustrate that weak RNGs can lead to
compromised encryption, token forgery, and impersonation [3].

High-quality randomness is crucial for security protocols like:

. TLS (Transport Layer Security): Secures web communications.

. VPNs (Virtual Private Networks): Protects network traffic.

. Digital signatures: Authenticate and preserve data integrity.

»
y 4

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE
IN A RAPIDLY EVOLVING WORLD

Published Date: - 25-11-2025 Page No: - 176-181

During operations like TLS handshakes, random values are used to generate session keys.
Predictable values in such contexts could allow attackers to decrypt sensitive communications.
Operating systems address these needs by integrating RNG subsystems that gather entropy
from multiple sources, including:

. User interactions (keyboard, mouse).
. Hardware timing variations (network packets, disk access).
. Hardware-based noise sources (Intel RDRAND, Trusted Platform Modules).

Collected entropy is processed through cryptographic algorithms—such as AES-CTR, SHA-
based DRBGs, or ChaCha20—to produce secure pseudorandom streams. Standardized APIs
(e.g., Windows’ BCryptGenRandom, Linux’s /dev/random, /dev/urandom, getrandom(), and
macOS’s arc4random() or SecRandomCopyBytes()) enable developers to safely access random
values without implementing custom RNGs [4].

While the goal—high-quality randomness—is consistent across platforms, design approaches

vary in:

. Platform architectures: Windows employs CNG, Linux relies on device files and system
calls, and macOS/iOS integrates RNGs into libraries and hardware.

. Entropy sourcing: Some systems rely more on hardware RNGs; others emphasize

software and event-driven inputs.
. DRBG selection: Implementations may use AES, SHA, HMAC, or ChaCha20 depending on
performance and security requirements.
This paper provides a comparative overview of RNG implementation strategies in major
operating systems, highlighting best practices, potential weaknesses, and avenues for future
improvements.
2. Background and Importance
Random number generation underpins modern cryptography, where the unpredictability and
entropy of values are directly tied to data confidentiality and system integrity. RNGs are used
to produce keys, initialization vectors, nonces, salts, session IDs, and digital signatures.
Predictable outputs jeopardize the entire security framework [5].
Real-world incidents, such as the Debian OpenSSL vulnerability (2006-2008), demonstrate the
catastrophic effects of weak RNGs. A modification that removed key entropy collection reduced
possible key variations to 32,768, making brute-force attacks trivial. This affected SSH keys, SSL
certificates, and other secure components, highlighting the importance of careful RNG design.
To address these challenges, modern operating systems use layered RNG architectures:
. Entropy sources: Non-deterministic hardware and software inputs, such as keystroke
timing, disk I/0, or hardware RNGs (e.g., Intel RDRAND, AMD RdSeed, TPMs).
. Entropy pools: Aggregates of raw entropy buffered until sufficient for secure seeding of
DRBGs. Linux distinguishes pools for /dev/random and /dev/urandom to prevent insufficient
randomness.
. DRBGs/PRGs: Expand limited entropy into secure pseudorandom streams using AES-
CTR, HMAC, SHA, or ChaCha20. Compliance with NIST SP 800-90A/B/C ensures cryptographic
robustness.
. APIs: Expose secure randomness to developers. Correct usage is critical, as weak
alternatives (e.g., rand()/srand()) can compromise security.

»
y 4

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE
IN A RAPIDLY EVOLVING WORLD

Published Date: - 25-11-2025 Page No: - 176-181

Well-engineered RNGs protect against weak encryption, token forgery, impersonation, and
unauthorized access. Continuous improvements and audits are necessary to maintain security
in evolving threat landscapes.

3. Random Number Generation in Operating Systems

3.1. RNG in Microsoft Windows

Windows RNG is implemented via the Cryptography API: Next Generation (CNG), incorporating
an AES-CTR-based DRBG compliant with NIST SP 800-90A.

Entropy sources include:

. Hardware RNGs (e.g., Intel RDRAND).

. System events (interrupts, calls).
. User input (mouse, keyboard).

. Network traffic timing.

. Disk read/write delays.

APIs and components:

. SystemPrng: Kernel-level CSPRNG, periodically reseeded.

. BCryptGenRandom(): Provides developers access to secure random bytes, with options
to use system-preferred or custom RNG algorithms.

Security features:

. Forward and backward secrecy through periodic reseeding.

. Entropy monitoring to detect depletion or tampering.

3.2. RNG in Linux Systems

Linux provides /dev/random (blocking) and /dev/urandom (non-blocking) interfaces,
supplemented by the getrandom() syscall. Since kernel 5.6, ChaCha20-based DRBGs replace
older SHA-1-based generators.

Entropy collection:

. Interrupt timings, keyboard/mouse events.
. Device driver noise (disk, network).
. Hardware RNGs (mixed to prevent bias).

The rngd daemon integrates hardware RNG data, ensuring FIPS-compliant validation and
proper entropy injection.

3.3.RNG in Apple’s macOS and iOS

Apple’s RNG combines hardware acceleration via the Secure Enclave and T2 Security Chip with
software-based entropy.

APIs and DRBGs:

. SecRandomCopyBytes(): Primary interface for secure random bytes.

. AES-CTR and ChaCha20-based DRBGs ensure cryptographic security.

. Frequent reseeding and sandboxing reinforce forward/backward secrecy.

Applications: Secure Boot, FileVault encryption, biometric authentication, and other critical
security functions.

4. Comparative Overview

. Microsoft Windows: Utilizes the Cryptography API: Next Generation (CNG) with an AES-
CTR Deterministic Random Bit Generator (DRBG). It draws entropy from diverse sources,
including hardware RNGs (e.g., Intel’s RDRAND), system event timings, user inputs, network
activity, and disk operations. The BCryptGenRandom/() API provides developers with access to

»
y 4

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE
IN A RAPIDLY EVOLVING WORLD

Published Date: - 25-11-2025 Page No: - 176-181

cryptographically secure random bytes, with periodic reseeding ensuring forward and
backward secrecy.
. Linux: Employs a dual-interface model with /dev/random (blocking) and
/dev/urandom (non-blocking), supplemented by the modern getrandom() system call. Since
kernel 5.6, it uses a ChaCha20-based DRBG, collecting entropy from interrupt timings, user
inputs, device drivers, and hardware RNGs. The rngd daemon enhances hardware entropy
integration, ensuring quality through validation.
. Apple macOS/iOS: Integrates RNG with hardware acceleration via the Secure Enclave
and T2 Security Chip, using the SecRandomCopyBytes() API. It combines AES-CTR and
ChaCha20-based DRBGs, sourcing entropy from system events and dedicated hardware.
Sandboxing and frequent reseeding enhance security, supporting critical functions like Secure
Boot, FileVault, and biometric authentication.

Table 1: Comparison of RNGs for operation systems

Feature Windows Linux mac0S/i0S
DRBG Type AES-CTR (gl(\)lf)T SP 800- ChaCha20 AES-CTR / ChaCha20
Entropy Hardware RNG: system Ir.lterruptg, user Secure Enclave, T2 Chip,
Sources events, user 1pput, input, drivers, system events
network, disk hardware RNG
Developer /dev/random,
API BCryptGenRandom() /dev/urandom, SecRandomCopyBytes()
getrandom()
) Periodic for Automatic, kernel- Frequent, hardware-
Reseeding forward/backward :
secrecy managed assisted
Security Enterprise and general- Kernel and user- Mobile, FIPS-compliant,
Emphasis purpose computing space cryptography hardware-accelerated
Shared principles:
. Secure entropy acquisition from diverse sources.
. Cryptographically compliant DRBG expansion.
. Regular reseeding to maintain secrecy.
. Accessible APIs for developers.
Challenges:
. Low entropy at system startup.
. Embedded systems with limited hardware.
. Heterogeneous hardware environments.
Future directions:
. Quantum-resistant RNG designs.
. Enhanced entropy validation and monitoring.
. Open-source transparency and third-party audits.
Conclusions

The security and reliability of modern computing systems depend on robust random number
generation. Windows, Linux, and macOS/iOS each implement unique RNG architectures
tailored to their environments while sharing core principles of secure entropy collection,
cryptographic expansion, and accessible APIs. Continued innovation in RNG design is vital to

»
y 4

\

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE
IN A RAPIDLY EVOLVING WORLD

Published Date: - 25-11-2025 Page No: - 176-181

counter increasingly sophisticated attacks and ensure that cryptographic mechanisms remain

resilient and trustworthy.

References

1. Barker, E., & Kelsey,]. (2015). Recommendation for Random Number Generation Using
Deterministic Random Bit Generators (Revised). NIST Special Publication 800-90A Rev.
1. https://doi.org/10.6028 /NIST.SP.800-90Ar1

2. Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness Requirements for Security.
RFC 4086. https://www.rfc-editor.org/rfc/rfc4086

3. Microsoft. (2023). Cryptography API: Next Generation. Microsoft Docs.
https://learn.microsoft.com/en-us/windows/win32 /seccng/cng-portal

4, Microsoft. (2023). BCryptGenRandom function (bcrypt.h). Microsoft Docs.
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-

bcryptgenrandom

5. Linux Kernel Documentation. (2023). Random Number Generator.
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html

6. Linux man-pages project. (2023). getrandom(2) - Linux manual page.
https://man7.org/linux/man-pages/man2/getrandom.2.html

7. Apple Developer Documentation. (2023). SecRandomCopyBytes.
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes

8. Apple. (2020). Platform Security Guide.

https://support.apple.com/guide/security /welcome/web

Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analysis of the Linux Random Number
Generator. IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2006.26

Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007). Cryptanalysis of the Random Number
Generator of the Windows Operating System. ACM CCS.
https://doi.org/10.1145/1315245.1315274

Lacharme, P. (2012). Security flaws in Linux's /dev/random.
https://eprint.iacr.org/2012/251

BSD Unix. (2022). arc4random and related APIs. https://man.openbsd.org/arc4random
Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-160: Notes on the Design and
Analysis of the Yarrow Cryptographic Pseudorandom Number Generator.
https://www.schneier.com/paper-yarrow.pdf

Dodis, Y., et al. (2013). Security Analysis of Pseudorandom Number Generators with
Input: /dev/random is not Robust. ACM CCS.
https://doi.org/10.1145/2508859.2516661

Intel Corporation. (2014). Intel® Digital Random Number Generator (DRNG) Software
Implementation Guide. https://www.intel.com/content/www/us/en/content-
details/671488/intel-digital-random-number-generator-drng-software-
implementation-guide.html

National Institute of Standards and Technology. (2012). A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications. NIST
SP 800-22 Rev. 1a. https://doi.org/10.6028 /NIST.SP.800-22r1a

»
y 4

NAVIGATING CHANGE STRATEGIES FOR INNOVATION AND RESILIENCE
IN A RAPIDLY EVOLVING WORLD

Published Date: - 25-11-2025 Page No: - 176-181

17. Miller, T. (2013). Security of the OpenSSL PRNG. International Journal of Information
Security, 12(4), 251-265. https://doi.org/10.1007/s10207-013-0213-7

18. Debian Security Advisory. (2008). Debian OpenSSL Predictable PRNG Vulnerability
(DSA-1571). https://www.debian.org/security /2008 /dsa-1571

